290 lines
11 KiB
C++
290 lines
11 KiB
C++
/*!
|
|
* file DHT.cpp
|
|
* mainpage DHT series of low cost temperature/humidity sensors.
|
|
* section intro_sec Introduction
|
|
* section author Author
|
|
* section license License
|
|
*/
|
|
|
|
#include "DHT.h"
|
|
#define MIN_INTERVAL 2000 /**< min wartość interwału */
|
|
#define TIMEOUT \
|
|
UINT32_MAX /**< Używana programowo do przekroczenia limitu czasu. Nie limit czasu. Wpisz: uint32_t. */
|
|
/*! @brief Tworzy nową klasę DHT
|
|
* @param pin numer pinu do którego podłączony jest czujnik
|
|
* param type typ czujnika: DHT21, 22 i tp.
|
|
* @param count liczba czujników */
|
|
|
|
DHT::DHT(uint8_t pin, uint8_t count) {
|
|
(void)count; // Obejście, aby uniknąć ostrzeżenia kompilatora.
|
|
_pin = pin;
|
|
#ifdef __AVR
|
|
_bit = digitalPinToBitMask(pin);
|
|
_port = digitalPinToPort(pin);
|
|
#endif
|
|
_maxcycles =
|
|
microsecondsToClockCycles(1000); //Limit czasu 1 milisekundy odczytu impulsów z czujnika DHT. Zauważ, że liczba jest teraz ignorowana,
|
|
//ponieważ algorytm odczytu DHT dostosowuje się w oparciu o szybkość procesora.
|
|
}
|
|
|
|
/*!
|
|
* @brief Skonfiguruj piny czujnika i ustaw czasy ściągania.
|
|
* @param usec Opcjonalnie podaj czas podciągania (w mikrosekundach) przed rozpoczęciem odczytu DHT. Domyślnie 55 (patrz deklaracja funkcji w DHT.h).
|
|
*/
|
|
void DHT::begin(uint8_t usec) {
|
|
// Ustaw piny
|
|
pinMode(_pin, INPUT_PULLUP);
|
|
// Użycie tej wartości gwarantuje, że millis() - lastreadtime będzie od razu >= MIN_INTERVAL.
|
|
// Zwróć uwagę, że to przypisanie jest zawijane, ale odejmowanie również.
|
|
_lastreadtime = millis() - MIN_INTERVAL;
|
|
DEBUG_PRINT("Maksymalne cykle zegara DHT: ");
|
|
DEBUG_PRINTLN(_maxcycles, DEC);
|
|
pullTime = usec;
|
|
}
|
|
|
|
/*!
|
|
* @brief Odczyt temperatury
|
|
* @param S Skala. Wartość logiczna:
|
|
* - prawda = stopnie Fahrenheita
|
|
* - fałsz = Celsjusz
|
|
* @param force true w trybie wymuszania
|
|
* @return Wartość temperatury w wybranej skali
|
|
*/
|
|
float DHT::readTemperature(bool S, bool force) {
|
|
float f = NAN;
|
|
if (read(force)) {
|
|
f = ((word)(data[2] & 0x7F)) << 8 | data[3];
|
|
f *= 0.1;
|
|
if (data[2] & 0x80)
|
|
f *= -1;
|
|
if (S)
|
|
f = convertCtoF(f);
|
|
}
|
|
return f;
|
|
}
|
|
|
|
/*!
|
|
* @brief konwertuje stopnie Celsjusza na Fahrenheita
|
|
*/
|
|
float DHT::convertCtoF(float c) { return c * 1.8 + 32; }
|
|
|
|
/*!
|
|
* @brief konwertuje stopnie Fahrenheita na Celsjusza
|
|
*/
|
|
float DHT::convertFtoC(float f) { return (f - 32) * 0.55555; }
|
|
|
|
/*!
|
|
* @brief odczyt wilgotności
|
|
* @param force tryb odczytu
|
|
* @return float value - wilgotność w %
|
|
*/
|
|
float DHT::readHumidity(bool force) {
|
|
float f = NAN;
|
|
if (read(force)) {
|
|
f = ((word)data[0]) << 8 | data[1];
|
|
f *= 0.1;
|
|
}
|
|
return f;
|
|
}
|
|
|
|
|
|
/*!
|
|
* @brief Obliczany wskaźnik ciepła
|
|
* Uproszczona wersja, która odczytuje temperaturę i wilgotność z czujnika
|
|
* @param isFahrenheit * prawda, jeśli stopnie Fahrenheita, fałsz, jeśli stopnie Celsjusza
|
|
* (domyślnie prawda)
|
|
* @return float wskaźnik ciepła
|
|
*/
|
|
float DHT::computeHeatIndex(bool isFahrenheit) {
|
|
float hi = computeHeatIndex(readTemperature(isFahrenheit), readHumidity(),
|
|
isFahrenheit);
|
|
return hi;
|
|
}
|
|
|
|
/*!
|
|
* @brief obliczany wskaźnik ciepła Używając równań Rothfusza i Steadmana. (http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml)
|
|
* @param temperature temperatura w wybranej skali
|
|
* @param percentHumidity wilgotność w procentach
|
|
* @param isFahrenheit prawda, jeśli stopnie Fahrenheita, fałsz, jeśli stopnie Celsjusza
|
|
* @return float wskaźnik ciepła
|
|
*/
|
|
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
|
|
float hi;
|
|
if (!isFahrenheit)
|
|
temperature = convertCtoF(temperature);
|
|
hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) +
|
|
(percentHumidity * 0.094));
|
|
|
|
if (hi > 79) {
|
|
hi = -42.379 + 2.04901523 * temperature + 10.14333127 * percentHumidity +
|
|
-0.22475541 * temperature * percentHumidity +
|
|
-0.00683783 * pow(temperature, 2) +
|
|
-0.05481717 * pow(percentHumidity, 2) +
|
|
0.00122874 * pow(temperature, 2) * percentHumidity +
|
|
0.00085282 * temperature * pow(percentHumidity, 2) +
|
|
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
|
|
if ((percentHumidity < 13) && (temperature >= 80.0) &&
|
|
(temperature <= 112.0))
|
|
hi -= ((13.0 - percentHumidity) * 0.25) *
|
|
sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
|
|
else if ((percentHumidity > 85.0) && (temperature >= 80.0) &&
|
|
(temperature <= 87.0))
|
|
hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
|
|
}
|
|
|
|
return isFahrenheit ? hi : convertFtoC(hi);
|
|
}
|
|
|
|
/*!
|
|
* @brief Odczytaj wartość z czujnika lub zwróć ostatnią z mniej niż dwóch sekund
|
|
* @param force prawda, jeśli używasz trybu force
|
|
* @return zwróć wartość zmiennoprzecinkową
|
|
*/
|
|
bool DHT::read(bool force) {
|
|
// Sprawdź, czy czujnik został odczytany mniej niż dwie sekundy temu i wróć wcześniej, aby użyć ostatniego odczytu.
|
|
uint32_t currenttime = millis();
|
|
if (!force && ((currenttime - _lastreadtime) < MIN_INTERVAL)) {
|
|
return _lastresult; // zwróć ostatni poprawny pomiar
|
|
}
|
|
_lastreadtime = currenttime;
|
|
|
|
// Zresetuj 40 bitów odebranych danych do zera.
|
|
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
|
|
|
|
#if defined(ESP8266)
|
|
yield(); // Obsługuj WiFi / zresetuj program watchdog
|
|
#endif
|
|
|
|
// Wyślij sygnał startu. Zobacz arkusz danych DHT dla pełnego schematu sygnału:
|
|
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
|
|
// Przejdź w stan wysokiej impedancji, aby umożliwić podciąganiu podniesienie poziomu linii danych i rozpoczęcie procesu odczytu.
|
|
pinMode(_pin, INPUT_PULLUP);
|
|
delay(1);
|
|
|
|
// Najpierw ustaw niską linię danych na okres zgodnie z typem czujnika
|
|
pinMode(_pin, OUTPUT);
|
|
digitalWrite(_pin, LOW);
|
|
delayMicroseconds(1100); // karta danych mówi „co najmniej 1ms”
|
|
delay(20); // data sheet says at least 18ms, 20ms just to be safe
|
|
|
|
uint32_t cycles[80];
|
|
{
|
|
// End the start signal by setting data line high for 40 microseconds.
|
|
pinMode(_pin, INPUT_PULLUP);
|
|
|
|
// Delay a moment to let sensor pull data line low.
|
|
delayMicroseconds(pullTime);
|
|
|
|
// Now start reading the data line to get the value from the DHT sensor.
|
|
|
|
// Turn off interrupts temporarily because the next sections
|
|
// are timing critical and we don't want any interruptions.
|
|
InterruptLock lock;
|
|
|
|
// First expect a low signal for ~80 microseconds followed by a high signal
|
|
// for ~80 microseconds again.
|
|
if (expectPulse(LOW) == TIMEOUT) {
|
|
//DEBUG_PRINTLN(F("DHT timeout waiting for start signal low pulse."));
|
|
_lastresult = false;
|
|
return _lastresult;
|
|
}
|
|
if (expectPulse(HIGH) == TIMEOUT) {
|
|
//DEBUG_PRINTLN(F("DHT timeout waiting for start signal high pulse."));
|
|
_lastresult = false;
|
|
return _lastresult;
|
|
}
|
|
|
|
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
|
|
// microsecond low pulse followed by a variable length high pulse. If the
|
|
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
|
|
// then it's a 1. We measure the cycle count of the initial 50us low pulse
|
|
// and use that to compare to the cycle count of the high pulse to determine
|
|
// if the bit is a 0 (high state cycle count < low state cycle count), or a
|
|
// 1 (high state cycle count > low state cycle count). Note that for speed
|
|
// all the pulses are read into a array and then examined in a later step.
|
|
for (int i = 0; i < 80; i += 2) {
|
|
cycles[i] = expectPulse(LOW);
|
|
cycles[i + 1] = expectPulse(HIGH);
|
|
}
|
|
} // Timing critical code is now complete.
|
|
|
|
// Inspect pulses and determine which ones are 0 (high state cycle count < low
|
|
// state cycle count), or 1 (high state cycle count > low state cycle count).
|
|
for (int i = 0; i < 40; ++i) {
|
|
uint32_t lowCycles = cycles[2 * i];
|
|
uint32_t highCycles = cycles[2 * i + 1];
|
|
if ((lowCycles == TIMEOUT) || (highCycles == TIMEOUT)) {
|
|
//DEBUG_PRINTLN(F("DHT timeout waiting for pulse."));
|
|
_lastresult = false;
|
|
return _lastresult;
|
|
}
|
|
data[i / 8] <<= 1;
|
|
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
|
|
if (highCycles > lowCycles) {
|
|
// High cycles are greater than 50us low cycle count, must be a 1.
|
|
data[i / 8] |= 1;
|
|
}
|
|
// Else high cycles are less than (or equal to, a weird case) the 50us low
|
|
// cycle count so this must be a zero. Nothing needs to be changed in the
|
|
// stored data.
|
|
}
|
|
/*
|
|
DEBUG_PRINTLN(F("Received from DHT:"));
|
|
DEBUG_PRINT(data[0], HEX);
|
|
DEBUG_PRINT(F(", "));
|
|
DEBUG_PRINT(data[1], HEX);
|
|
DEBUG_PRINT(F(", "));
|
|
DEBUG_PRINT(data[2], HEX);
|
|
DEBUG_PRINT(F(", "));
|
|
DEBUG_PRINT(data[3], HEX);
|
|
DEBUG_PRINT(F(", "));
|
|
DEBUG_PRINT(data[4], HEX);
|
|
DEBUG_PRINT(F(" =? "));
|
|
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
|
|
*/
|
|
// Check we read 40 bits and that the checksum matches.
|
|
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
|
|
_lastresult = true;
|
|
return _lastresult;
|
|
} else {
|
|
//DEBUG_PRINTLN(F("DHT checksum failure!"));
|
|
_lastresult = false;
|
|
return _lastresult;
|
|
}
|
|
}
|
|
|
|
// Expect the signal line to be at the specified level for a period of time and
|
|
// return a count of loop cycles spent at that level (this cycle count can be
|
|
// used to compare the relative time of two pulses). If more than a millisecond
|
|
// ellapses without the level changing then the call fails with a 0 response.
|
|
// This is adapted from Arduino's pulseInLong function (which is only available
|
|
// in the very latest IDE versions):
|
|
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
|
|
uint32_t DHT::expectPulse(bool level) {
|
|
#if (F_CPU > 16000000L)
|
|
uint32_t count = 0;
|
|
#else
|
|
uint16_t count = 0; // To work fast enough on slower AVR boards
|
|
#endif
|
|
// On AVR platforms use direct GPIO port access as it's much faster and better
|
|
// for catching pulses that are 10's of microseconds in length:
|
|
#ifdef __AVR
|
|
uint8_t portState = level ? _bit : 0;
|
|
while ((*portInputRegister(_port) & _bit) == portState) {
|
|
if (count++ >= _maxcycles) {
|
|
return TIMEOUT; // Exceeded timeout, fail.
|
|
}
|
|
}
|
|
// Otherwise fall back to using digitalRead (this seems to be necessary on
|
|
// ESP8266 right now, perhaps bugs in direct port access functions?).
|
|
#else
|
|
while (digitalRead(_pin) == level) {
|
|
if (count++ >= _maxcycles) {
|
|
return TIMEOUT; // Exceeded timeout, fail.
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return count;
|
|
}
|