Prześlij pliki do ''

This commit is contained in:
Luiza 2022-06-12 11:44:26 +02:00
parent fd4c0db455
commit 0d89442d06
2 changed files with 394 additions and 0 deletions

289
DHT.cpp Normal file
View File

@ -0,0 +1,289 @@
/*!
* file DHT.cpp
* mainpage DHT series of low cost temperature/humidity sensors.
* section intro_sec Introduction
* section author Author
* section license License
*/
#include "DHT.h"
#define MIN_INTERVAL 2000 /**< min wartość interwału */
#define TIMEOUT \
UINT32_MAX /**< Używana programowo do przekroczenia limitu czasu. Nie limit czasu. Wpisz: uint32_t. */
/*! @brief Tworzy nową klasę DHT
* @param pin numer pinu do którego podłączony jest czujnik
* param type typ czujnika: DHT21, 22 i tp.
* @param count liczba czujników */
DHT::DHT(uint8_t pin, uint8_t count) {
(void)count; // Obejście, aby uniknąć ostrzeżenia kompilatora.
_pin = pin;
#ifdef __AVR
_bit = digitalPinToBitMask(pin);
_port = digitalPinToPort(pin);
#endif
_maxcycles =
microsecondsToClockCycles(1000); //Limit czasu 1 milisekundy odczytu impulsów z czujnika DHT. Zauważ, że liczba jest teraz ignorowana,
//ponieważ algorytm odczytu DHT dostosowuje się w oparciu o szybkość procesora.
}
/*!
* @brief Skonfiguruj piny czujnika i ustaw czasy ściągania.
* @param usec Opcjonalnie podaj czas podciągania (w mikrosekundach) przed rozpoczęciem odczytu DHT. Domyślnie 55 (patrz deklaracja funkcji w DHT.h).
*/
void DHT::begin(uint8_t usec) {
// Ustaw piny
pinMode(_pin, INPUT_PULLUP);
// Użycie tej wartości gwarantuje, że millis() - lastreadtime będzie od razu >= MIN_INTERVAL.
// Zwróć uwagę, że to przypisanie jest zawijane, ale odejmowanie również.
_lastreadtime = millis() - MIN_INTERVAL;
DEBUG_PRINT("Maksymalne cykle zegara DHT: ");
DEBUG_PRINTLN(_maxcycles, DEC);
pullTime = usec;
}
/*!
* @brief Odczyt temperatury
* @param S Skala. Wartość logiczna:
* - prawda = stopnie Fahrenheita
* - fałsz = Celsjusz
* @param force true w trybie wymuszania
* @return Wartość temperatury w wybranej skali
*/
float DHT::readTemperature(bool S, bool force) {
float f = NAN;
if (read(force)) {
f = ((word)(data[2] & 0x7F)) << 8 | data[3];
f *= 0.1;
if (data[2] & 0x80)
f *= -1;
if (S)
f = convertCtoF(f);
}
return f;
}
/*!
* @brief konwertuje stopnie Celsjusza na Fahrenheita
*/
float DHT::convertCtoF(float c) { return c * 1.8 + 32; }
/*!
* @brief konwertuje stopnie Fahrenheita na Celsjusza
*/
float DHT::convertFtoC(float f) { return (f - 32) * 0.55555; }
/*!
* @brief odczyt wilgotności
* @param force tryb odczytu
* @return float value - wilgotność w %
*/
float DHT::readHumidity(bool force) {
float f = NAN;
if (read(force)) {
f = ((word)data[0]) << 8 | data[1];
f *= 0.1;
}
return f;
}
/*!
* @brief Obliczany wskaźnik ciepła
* Uproszczona wersja, która odczytuje temperaturę i wilgotność z czujnika
* @param isFahrenheit * prawda, jeśli stopnie Fahrenheita, fałsz, jeśli stopnie Celsjusza
* (domyślnie prawda)
* @return float wskaźnik ciepła
*/
float DHT::computeHeatIndex(bool isFahrenheit) {
float hi = computeHeatIndex(readTemperature(isFahrenheit), readHumidity(),
isFahrenheit);
return hi;
}
/*!
* @brief obliczany wskaźnik ciepła Używając równań Rothfusza i Steadmana. (http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml)
* @param temperature temperatura w wybranej skali
* @param percentHumidity wilgotność w procentach
* @param isFahrenheit prawda, jeśli stopnie Fahrenheita, fałsz, jeśli stopnie Celsjusza
* @return float wskaźnik ciepła
*/
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
float hi;
if (!isFahrenheit)
temperature = convertCtoF(temperature);
hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) +
(percentHumidity * 0.094));
if (hi > 79) {
hi = -42.379 + 2.04901523 * temperature + 10.14333127 * percentHumidity +
-0.22475541 * temperature * percentHumidity +
-0.00683783 * pow(temperature, 2) +
-0.05481717 * pow(percentHumidity, 2) +
0.00122874 * pow(temperature, 2) * percentHumidity +
0.00085282 * temperature * pow(percentHumidity, 2) +
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
if ((percentHumidity < 13) && (temperature >= 80.0) &&
(temperature <= 112.0))
hi -= ((13.0 - percentHumidity) * 0.25) *
sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
else if ((percentHumidity > 85.0) && (temperature >= 80.0) &&
(temperature <= 87.0))
hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
}
return isFahrenheit ? hi : convertFtoC(hi);
}
/*!
* @brief Odczytaj wartość z czujnika lub zwróć ostatnią z mniej niż dwóch sekund
* @param force prawda, jeśli używasz trybu force
* @return zwróć wartość zmiennoprzecinkową
*/
bool DHT::read(bool force) {
// Sprawdź, czy czujnik został odczytany mniej niż dwie sekundy temu i wróć wcześniej, aby użyć ostatniego odczytu.
uint32_t currenttime = millis();
if (!force && ((currenttime - _lastreadtime) < MIN_INTERVAL)) {
return _lastresult; // zwróć ostatni poprawny pomiar
}
_lastreadtime = currenttime;
// Zresetuj 40 bitów odebranych danych do zera.
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
#if defined(ESP8266)
yield(); // Obsługuj WiFi / zresetuj program watchdog
#endif
// Wyślij sygnał startu. Zobacz arkusz danych DHT dla pełnego schematu sygnału:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Przejdź w stan wysokiej impedancji, aby umożliwić podciąganiu podniesienie poziomu linii danych i rozpoczęcie procesu odczytu.
pinMode(_pin, INPUT_PULLUP);
delay(1);
// Najpierw ustaw niską linię danych na okres zgodnie z typem czujnika
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delayMicroseconds(1100); // karta danych mówi „co najmniej 1ms”
delay(20); // data sheet says at least 18ms, 20ms just to be safe
uint32_t cycles[80];
{
// End the start signal by setting data line high for 40 microseconds.
pinMode(_pin, INPUT_PULLUP);
// Delay a moment to let sensor pull data line low.
delayMicroseconds(pullTime);
// Now start reading the data line to get the value from the DHT sensor.
// Turn off interrupts temporarily because the next sections
// are timing critical and we don't want any interruptions.
InterruptLock lock;
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if (expectPulse(LOW) == TIMEOUT) {
//DEBUG_PRINTLN(F("DHT timeout waiting for start signal low pulse."));
_lastresult = false;
return _lastresult;
}
if (expectPulse(HIGH) == TIMEOUT) {
//DEBUG_PRINTLN(F("DHT timeout waiting for start signal high pulse."));
_lastresult = false;
return _lastresult;
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count). Note that for speed
// all the pulses are read into a array and then examined in a later step.
for (int i = 0; i < 80; i += 2) {
cycles[i] = expectPulse(LOW);
cycles[i + 1] = expectPulse(HIGH);
}
} // Timing critical code is now complete.
// Inspect pulses and determine which ones are 0 (high state cycle count < low
// state cycle count), or 1 (high state cycle count > low state cycle count).
for (int i = 0; i < 40; ++i) {
uint32_t lowCycles = cycles[2 * i];
uint32_t highCycles = cycles[2 * i + 1];
if ((lowCycles == TIMEOUT) || (highCycles == TIMEOUT)) {
//DEBUG_PRINTLN(F("DHT timeout waiting for pulse."));
_lastresult = false;
return _lastresult;
}
data[i / 8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i / 8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
/*
DEBUG_PRINTLN(F("Received from DHT:"));
DEBUG_PRINT(data[0], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[1], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[2], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[3], HEX);
DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[4], HEX);
DEBUG_PRINT(F(" =? "));
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
*/
// Check we read 40 bits and that the checksum matches.
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
_lastresult = true;
return _lastresult;
} else {
//DEBUG_PRINTLN(F("DHT checksum failure!"));
_lastresult = false;
return _lastresult;
}
}
// Expect the signal line to be at the specified level for a period of time and
// return a count of loop cycles spent at that level (this cycle count can be
// used to compare the relative time of two pulses). If more than a millisecond
// ellapses without the level changing then the call fails with a 0 response.
// This is adapted from Arduino's pulseInLong function (which is only available
// in the very latest IDE versions):
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
uint32_t DHT::expectPulse(bool level) {
#if (F_CPU > 16000000L)
uint32_t count = 0;
#else
uint16_t count = 0; // To work fast enough on slower AVR boards
#endif
// On AVR platforms use direct GPIO port access as it's much faster and better
// for catching pulses that are 10's of microseconds in length:
#ifdef __AVR
uint8_t portState = level ? _bit : 0;
while ((*portInputRegister(_port) & _bit) == portState) {
if (count++ >= _maxcycles) {
return TIMEOUT; // Exceeded timeout, fail.
}
}
// Otherwise fall back to using digitalRead (this seems to be necessary on
// ESP8266 right now, perhaps bugs in direct port access functions?).
#else
while (digitalRead(_pin) == level) {
if (count++ >= _maxcycles) {
return TIMEOUT; // Exceeded timeout, fail.
}
}
#endif
return count;
}

105
DHT.h Normal file
View File

@ -0,0 +1,105 @@
/*!
* @file DHT.h
*
* This is a library for DHT series of low cost temperature/humidity sensors.
*
* You must have Adafruit Unified Sensor Library library installed to use this
* class.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit andopen-source hardware by purchasing products
* from Adafruit!
*
* Written by Adafruit Industries.
*
* MIT license, all text above must be included in any redistribution
*/
#ifndef DHT_H
#define DHT_H
#include "Arduino.h"
/* Uncomment to enable printing out nice debug messages. */
//#define DHT_DEBUG
#define DEBUG_PRINTER \
Serial /**< Define where debug output will be printed. \
*/
/* Setup debug printing macros. */
#ifdef DHT_DEBUG
#define DEBUG_PRINT(...) \
{ DEBUG_PRINTER.print(__VA_ARGS__); }
#define DEBUG_PRINTLN(...) \
{ DEBUG_PRINTER.println(__VA_ARGS__); }
#else
#define DEBUG_PRINT(...) \
{} /**< Debug Print Placeholder if Debug is disabled */
#define DEBUG_PRINTLN(...) \
{} /**< Debug Print Line Placeholder if Debug is disabled */
#endif
/* Define types of sensors. */
static const uint8_t DHT22{22}; /**< DHT TYPE 22 */
#if defined(TARGET_NAME) && (TARGET_NAME == ARDUINO_NANO33BLE)
#ifndef microsecondsToClockCycles
/*!
* As of 7 Sep 2020 the Arduino Nano 33 BLE boards do not have
* microsecondsToClockCycles defined.
*/
#define microsecondsToClockCycles(a) ((a) * (SystemCoreClock / 1000000L))
#endif
#endif
/*!
* @brief Class that stores state and functions for DHT
*/
class DHT {
public:
DHT(uint8_t pin, uint8_t type, uint8_t count = 6);
void begin(uint8_t usec = 55);
int readTemperature(bool S = false, bool force = false);
int convertCtoF(float);
int convertFtoC(float);
int computeHeatIndex(bool isFahrenheit = true);
int computeHeatIndex(float temperature, float percentHumidity,
bool isFahrenheit = true);
int readHumidity(bool force = false);
bool read(bool force = false);
private:
uint8_t data[5];
uint8_t _pin, _type;
#ifdef __AVR
// Use direct GPIO access on an 8-bit AVR so keep track of the port and
// bitmask for the digital pin connected to the DHT. Other platforms will use
// digitalRead.
uint8_t _bit, _port;
#endif
uint32_t _lastreadtime, _maxcycles;
bool _lastresult;
uint8_t pullTime; // Time (in usec) to pull up data line before reading
uint32_t expectPulse(bool level);
};
/*!
* @brief Class that defines Interrupt Lock Avaiability
*/
class InterruptLock {
public:
InterruptLock() {
#if !defined(ARDUINO_ARCH_NRF52)
noInterrupts();
#endif
}
~InterruptLock() {
#if !defined(ARDUINO_ARCH_NRF52)
interrupts();
#endif
}
};
#endif