Prześlij pliki do ''
This commit is contained in:
parent
fd4c0db455
commit
0d89442d06
289
DHT.cpp
Normal file
289
DHT.cpp
Normal file
@ -0,0 +1,289 @@
|
||||
/*!
|
||||
* file DHT.cpp
|
||||
* mainpage DHT series of low cost temperature/humidity sensors.
|
||||
* section intro_sec Introduction
|
||||
* section author Author
|
||||
* section license License
|
||||
*/
|
||||
|
||||
#include "DHT.h"
|
||||
#define MIN_INTERVAL 2000 /**< min wartość interwału */
|
||||
#define TIMEOUT \
|
||||
UINT32_MAX /**< Używana programowo do przekroczenia limitu czasu. Nie limit czasu. Wpisz: uint32_t. */
|
||||
/*! @brief Tworzy nową klasę DHT
|
||||
* @param pin numer pinu do którego podłączony jest czujnik
|
||||
* param type typ czujnika: DHT21, 22 i tp.
|
||||
* @param count liczba czujników */
|
||||
|
||||
DHT::DHT(uint8_t pin, uint8_t count) {
|
||||
(void)count; // Obejście, aby uniknąć ostrzeżenia kompilatora.
|
||||
_pin = pin;
|
||||
#ifdef __AVR
|
||||
_bit = digitalPinToBitMask(pin);
|
||||
_port = digitalPinToPort(pin);
|
||||
#endif
|
||||
_maxcycles =
|
||||
microsecondsToClockCycles(1000); //Limit czasu 1 milisekundy odczytu impulsów z czujnika DHT. Zauważ, że liczba jest teraz ignorowana,
|
||||
//ponieważ algorytm odczytu DHT dostosowuje się w oparciu o szybkość procesora.
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Skonfiguruj piny czujnika i ustaw czasy ściągania.
|
||||
* @param usec Opcjonalnie podaj czas podciągania (w mikrosekundach) przed rozpoczęciem odczytu DHT. Domyślnie 55 (patrz deklaracja funkcji w DHT.h).
|
||||
*/
|
||||
void DHT::begin(uint8_t usec) {
|
||||
// Ustaw piny
|
||||
pinMode(_pin, INPUT_PULLUP);
|
||||
// Użycie tej wartości gwarantuje, że millis() - lastreadtime będzie od razu >= MIN_INTERVAL.
|
||||
// Zwróć uwagę, że to przypisanie jest zawijane, ale odejmowanie również.
|
||||
_lastreadtime = millis() - MIN_INTERVAL;
|
||||
DEBUG_PRINT("Maksymalne cykle zegara DHT: ");
|
||||
DEBUG_PRINTLN(_maxcycles, DEC);
|
||||
pullTime = usec;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Odczyt temperatury
|
||||
* @param S Skala. Wartość logiczna:
|
||||
* - prawda = stopnie Fahrenheita
|
||||
* - fałsz = Celsjusz
|
||||
* @param force true w trybie wymuszania
|
||||
* @return Wartość temperatury w wybranej skali
|
||||
*/
|
||||
float DHT::readTemperature(bool S, bool force) {
|
||||
float f = NAN;
|
||||
if (read(force)) {
|
||||
f = ((word)(data[2] & 0x7F)) << 8 | data[3];
|
||||
f *= 0.1;
|
||||
if (data[2] & 0x80)
|
||||
f *= -1;
|
||||
if (S)
|
||||
f = convertCtoF(f);
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief konwertuje stopnie Celsjusza na Fahrenheita
|
||||
*/
|
||||
float DHT::convertCtoF(float c) { return c * 1.8 + 32; }
|
||||
|
||||
/*!
|
||||
* @brief konwertuje stopnie Fahrenheita na Celsjusza
|
||||
*/
|
||||
float DHT::convertFtoC(float f) { return (f - 32) * 0.55555; }
|
||||
|
||||
/*!
|
||||
* @brief odczyt wilgotności
|
||||
* @param force tryb odczytu
|
||||
* @return float value - wilgotność w %
|
||||
*/
|
||||
float DHT::readHumidity(bool force) {
|
||||
float f = NAN;
|
||||
if (read(force)) {
|
||||
f = ((word)data[0]) << 8 | data[1];
|
||||
f *= 0.1;
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief Obliczany wskaźnik ciepła
|
||||
* Uproszczona wersja, która odczytuje temperaturę i wilgotność z czujnika
|
||||
* @param isFahrenheit * prawda, jeśli stopnie Fahrenheita, fałsz, jeśli stopnie Celsjusza
|
||||
* (domyślnie prawda)
|
||||
* @return float wskaźnik ciepła
|
||||
*/
|
||||
float DHT::computeHeatIndex(bool isFahrenheit) {
|
||||
float hi = computeHeatIndex(readTemperature(isFahrenheit), readHumidity(),
|
||||
isFahrenheit);
|
||||
return hi;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief obliczany wskaźnik ciepła Używając równań Rothfusza i Steadmana. (http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml)
|
||||
* @param temperature temperatura w wybranej skali
|
||||
* @param percentHumidity wilgotność w procentach
|
||||
* @param isFahrenheit prawda, jeśli stopnie Fahrenheita, fałsz, jeśli stopnie Celsjusza
|
||||
* @return float wskaźnik ciepła
|
||||
*/
|
||||
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
|
||||
float hi;
|
||||
if (!isFahrenheit)
|
||||
temperature = convertCtoF(temperature);
|
||||
hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) +
|
||||
(percentHumidity * 0.094));
|
||||
|
||||
if (hi > 79) {
|
||||
hi = -42.379 + 2.04901523 * temperature + 10.14333127 * percentHumidity +
|
||||
-0.22475541 * temperature * percentHumidity +
|
||||
-0.00683783 * pow(temperature, 2) +
|
||||
-0.05481717 * pow(percentHumidity, 2) +
|
||||
0.00122874 * pow(temperature, 2) * percentHumidity +
|
||||
0.00085282 * temperature * pow(percentHumidity, 2) +
|
||||
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
|
||||
if ((percentHumidity < 13) && (temperature >= 80.0) &&
|
||||
(temperature <= 112.0))
|
||||
hi -= ((13.0 - percentHumidity) * 0.25) *
|
||||
sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
|
||||
else if ((percentHumidity > 85.0) && (temperature >= 80.0) &&
|
||||
(temperature <= 87.0))
|
||||
hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
|
||||
}
|
||||
|
||||
return isFahrenheit ? hi : convertFtoC(hi);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief Odczytaj wartość z czujnika lub zwróć ostatnią z mniej niż dwóch sekund
|
||||
* @param force prawda, jeśli używasz trybu force
|
||||
* @return zwróć wartość zmiennoprzecinkową
|
||||
*/
|
||||
bool DHT::read(bool force) {
|
||||
// Sprawdź, czy czujnik został odczytany mniej niż dwie sekundy temu i wróć wcześniej, aby użyć ostatniego odczytu.
|
||||
uint32_t currenttime = millis();
|
||||
if (!force && ((currenttime - _lastreadtime) < MIN_INTERVAL)) {
|
||||
return _lastresult; // zwróć ostatni poprawny pomiar
|
||||
}
|
||||
_lastreadtime = currenttime;
|
||||
|
||||
// Zresetuj 40 bitów odebranych danych do zera.
|
||||
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
|
||||
|
||||
#if defined(ESP8266)
|
||||
yield(); // Obsługuj WiFi / zresetuj program watchdog
|
||||
#endif
|
||||
|
||||
// Wyślij sygnał startu. Zobacz arkusz danych DHT dla pełnego schematu sygnału:
|
||||
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
|
||||
// Przejdź w stan wysokiej impedancji, aby umożliwić podciąganiu podniesienie poziomu linii danych i rozpoczęcie procesu odczytu.
|
||||
pinMode(_pin, INPUT_PULLUP);
|
||||
delay(1);
|
||||
|
||||
// Najpierw ustaw niską linię danych na okres zgodnie z typem czujnika
|
||||
pinMode(_pin, OUTPUT);
|
||||
digitalWrite(_pin, LOW);
|
||||
delayMicroseconds(1100); // karta danych mówi „co najmniej 1ms”
|
||||
delay(20); // data sheet says at least 18ms, 20ms just to be safe
|
||||
|
||||
uint32_t cycles[80];
|
||||
{
|
||||
// End the start signal by setting data line high for 40 microseconds.
|
||||
pinMode(_pin, INPUT_PULLUP);
|
||||
|
||||
// Delay a moment to let sensor pull data line low.
|
||||
delayMicroseconds(pullTime);
|
||||
|
||||
// Now start reading the data line to get the value from the DHT sensor.
|
||||
|
||||
// Turn off interrupts temporarily because the next sections
|
||||
// are timing critical and we don't want any interruptions.
|
||||
InterruptLock lock;
|
||||
|
||||
// First expect a low signal for ~80 microseconds followed by a high signal
|
||||
// for ~80 microseconds again.
|
||||
if (expectPulse(LOW) == TIMEOUT) {
|
||||
//DEBUG_PRINTLN(F("DHT timeout waiting for start signal low pulse."));
|
||||
_lastresult = false;
|
||||
return _lastresult;
|
||||
}
|
||||
if (expectPulse(HIGH) == TIMEOUT) {
|
||||
//DEBUG_PRINTLN(F("DHT timeout waiting for start signal high pulse."));
|
||||
_lastresult = false;
|
||||
return _lastresult;
|
||||
}
|
||||
|
||||
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
|
||||
// microsecond low pulse followed by a variable length high pulse. If the
|
||||
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
|
||||
// then it's a 1. We measure the cycle count of the initial 50us low pulse
|
||||
// and use that to compare to the cycle count of the high pulse to determine
|
||||
// if the bit is a 0 (high state cycle count < low state cycle count), or a
|
||||
// 1 (high state cycle count > low state cycle count). Note that for speed
|
||||
// all the pulses are read into a array and then examined in a later step.
|
||||
for (int i = 0; i < 80; i += 2) {
|
||||
cycles[i] = expectPulse(LOW);
|
||||
cycles[i + 1] = expectPulse(HIGH);
|
||||
}
|
||||
} // Timing critical code is now complete.
|
||||
|
||||
// Inspect pulses and determine which ones are 0 (high state cycle count < low
|
||||
// state cycle count), or 1 (high state cycle count > low state cycle count).
|
||||
for (int i = 0; i < 40; ++i) {
|
||||
uint32_t lowCycles = cycles[2 * i];
|
||||
uint32_t highCycles = cycles[2 * i + 1];
|
||||
if ((lowCycles == TIMEOUT) || (highCycles == TIMEOUT)) {
|
||||
//DEBUG_PRINTLN(F("DHT timeout waiting for pulse."));
|
||||
_lastresult = false;
|
||||
return _lastresult;
|
||||
}
|
||||
data[i / 8] <<= 1;
|
||||
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
|
||||
if (highCycles > lowCycles) {
|
||||
// High cycles are greater than 50us low cycle count, must be a 1.
|
||||
data[i / 8] |= 1;
|
||||
}
|
||||
// Else high cycles are less than (or equal to, a weird case) the 50us low
|
||||
// cycle count so this must be a zero. Nothing needs to be changed in the
|
||||
// stored data.
|
||||
}
|
||||
/*
|
||||
DEBUG_PRINTLN(F("Received from DHT:"));
|
||||
DEBUG_PRINT(data[0], HEX);
|
||||
DEBUG_PRINT(F(", "));
|
||||
DEBUG_PRINT(data[1], HEX);
|
||||
DEBUG_PRINT(F(", "));
|
||||
DEBUG_PRINT(data[2], HEX);
|
||||
DEBUG_PRINT(F(", "));
|
||||
DEBUG_PRINT(data[3], HEX);
|
||||
DEBUG_PRINT(F(", "));
|
||||
DEBUG_PRINT(data[4], HEX);
|
||||
DEBUG_PRINT(F(" =? "));
|
||||
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
|
||||
*/
|
||||
// Check we read 40 bits and that the checksum matches.
|
||||
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
|
||||
_lastresult = true;
|
||||
return _lastresult;
|
||||
} else {
|
||||
//DEBUG_PRINTLN(F("DHT checksum failure!"));
|
||||
_lastresult = false;
|
||||
return _lastresult;
|
||||
}
|
||||
}
|
||||
|
||||
// Expect the signal line to be at the specified level for a period of time and
|
||||
// return a count of loop cycles spent at that level (this cycle count can be
|
||||
// used to compare the relative time of two pulses). If more than a millisecond
|
||||
// ellapses without the level changing then the call fails with a 0 response.
|
||||
// This is adapted from Arduino's pulseInLong function (which is only available
|
||||
// in the very latest IDE versions):
|
||||
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
|
||||
uint32_t DHT::expectPulse(bool level) {
|
||||
#if (F_CPU > 16000000L)
|
||||
uint32_t count = 0;
|
||||
#else
|
||||
uint16_t count = 0; // To work fast enough on slower AVR boards
|
||||
#endif
|
||||
// On AVR platforms use direct GPIO port access as it's much faster and better
|
||||
// for catching pulses that are 10's of microseconds in length:
|
||||
#ifdef __AVR
|
||||
uint8_t portState = level ? _bit : 0;
|
||||
while ((*portInputRegister(_port) & _bit) == portState) {
|
||||
if (count++ >= _maxcycles) {
|
||||
return TIMEOUT; // Exceeded timeout, fail.
|
||||
}
|
||||
}
|
||||
// Otherwise fall back to using digitalRead (this seems to be necessary on
|
||||
// ESP8266 right now, perhaps bugs in direct port access functions?).
|
||||
#else
|
||||
while (digitalRead(_pin) == level) {
|
||||
if (count++ >= _maxcycles) {
|
||||
return TIMEOUT; // Exceeded timeout, fail.
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return count;
|
||||
}
|
105
DHT.h
Normal file
105
DHT.h
Normal file
@ -0,0 +1,105 @@
|
||||
/*!
|
||||
* @file DHT.h
|
||||
*
|
||||
* This is a library for DHT series of low cost temperature/humidity sensors.
|
||||
*
|
||||
* You must have Adafruit Unified Sensor Library library installed to use this
|
||||
* class.
|
||||
*
|
||||
* Adafruit invests time and resources providing this open source code,
|
||||
* please support Adafruit andopen-source hardware by purchasing products
|
||||
* from Adafruit!
|
||||
*
|
||||
* Written by Adafruit Industries.
|
||||
*
|
||||
* MIT license, all text above must be included in any redistribution
|
||||
*/
|
||||
|
||||
#ifndef DHT_H
|
||||
#define DHT_H
|
||||
|
||||
#include "Arduino.h"
|
||||
|
||||
/* Uncomment to enable printing out nice debug messages. */
|
||||
//#define DHT_DEBUG
|
||||
|
||||
#define DEBUG_PRINTER \
|
||||
Serial /**< Define where debug output will be printed. \
|
||||
*/
|
||||
|
||||
/* Setup debug printing macros. */
|
||||
#ifdef DHT_DEBUG
|
||||
#define DEBUG_PRINT(...) \
|
||||
{ DEBUG_PRINTER.print(__VA_ARGS__); }
|
||||
#define DEBUG_PRINTLN(...) \
|
||||
{ DEBUG_PRINTER.println(__VA_ARGS__); }
|
||||
#else
|
||||
#define DEBUG_PRINT(...) \
|
||||
{} /**< Debug Print Placeholder if Debug is disabled */
|
||||
#define DEBUG_PRINTLN(...) \
|
||||
{} /**< Debug Print Line Placeholder if Debug is disabled */
|
||||
#endif
|
||||
|
||||
/* Define types of sensors. */
|
||||
static const uint8_t DHT22{22}; /**< DHT TYPE 22 */
|
||||
|
||||
#if defined(TARGET_NAME) && (TARGET_NAME == ARDUINO_NANO33BLE)
|
||||
#ifndef microsecondsToClockCycles
|
||||
/*!
|
||||
* As of 7 Sep 2020 the Arduino Nano 33 BLE boards do not have
|
||||
* microsecondsToClockCycles defined.
|
||||
*/
|
||||
#define microsecondsToClockCycles(a) ((a) * (SystemCoreClock / 1000000L))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*!
|
||||
* @brief Class that stores state and functions for DHT
|
||||
*/
|
||||
class DHT {
|
||||
public:
|
||||
DHT(uint8_t pin, uint8_t type, uint8_t count = 6);
|
||||
void begin(uint8_t usec = 55);
|
||||
int readTemperature(bool S = false, bool force = false);
|
||||
int convertCtoF(float);
|
||||
int convertFtoC(float);
|
||||
int computeHeatIndex(bool isFahrenheit = true);
|
||||
int computeHeatIndex(float temperature, float percentHumidity,
|
||||
bool isFahrenheit = true);
|
||||
int readHumidity(bool force = false);
|
||||
bool read(bool force = false);
|
||||
|
||||
private:
|
||||
uint8_t data[5];
|
||||
uint8_t _pin, _type;
|
||||
#ifdef __AVR
|
||||
// Use direct GPIO access on an 8-bit AVR so keep track of the port and
|
||||
// bitmask for the digital pin connected to the DHT. Other platforms will use
|
||||
// digitalRead.
|
||||
uint8_t _bit, _port;
|
||||
#endif
|
||||
uint32_t _lastreadtime, _maxcycles;
|
||||
bool _lastresult;
|
||||
uint8_t pullTime; // Time (in usec) to pull up data line before reading
|
||||
|
||||
uint32_t expectPulse(bool level);
|
||||
};
|
||||
|
||||
/*!
|
||||
* @brief Class that defines Interrupt Lock Avaiability
|
||||
*/
|
||||
class InterruptLock {
|
||||
public:
|
||||
InterruptLock() {
|
||||
#if !defined(ARDUINO_ARCH_NRF52)
|
||||
noInterrupts();
|
||||
#endif
|
||||
}
|
||||
~InterruptLock() {
|
||||
#if !defined(ARDUINO_ARCH_NRF52)
|
||||
interrupts();
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user